NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent.

نویسندگان

  • J N MacLean
  • K C Cowley
  • B J Schmidt
چکیده

The effect of serotonin (5-HT) receptor blockade on rhythmic network activity and on N-methyl--aspartate (NMDA) receptor-induced membrane voltage oscillations was examined using an in vitro neonatal rat spinal cord preparation. Pharmacologically induced rhythmic hindlimb activity, monitored via flexor and extensor electroneurograms or ventral root recordings, was abolished by 5-HT receptor antagonists. Intrinsic motoneuronal voltage oscillations, induced by NMDA in the presence of tetrodotoxin (TTX), either were abolished completely or transformed to long-lasting voltage shifts by 5-HT receptor antagonists. Conversely, 5-HT application facilitated the expression of NMDA-receptor-mediated rhythmic voltage oscillations. The results suggest that an interplay between 5-HT and NMDA receptor actions may be critical for the production of rhythmic motor behavior in the mammalian spinal cord, both at the network and single cell level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAPID COMMUNICATION NMDA Receptor-Mediated Oscillatory Activity in the Neonatal Rat Spinal Cord Is Serotonin Dependent

MacLean, Jason N., Kristine C. Cowley, and Brian J. Schmidt. spinal cats reverses perturbations of the locomotor pattern NMDA receptor-mediated oscillatory activity in the neonatal rat produced by 5-HT agonists (Barbeau and Rossignol 1990), spinal cord is serotonin dependent. J. Neurophysiol. 79: 2804– it remains to be shown whether endogenous 5-HT receptor 2808, 1998. The effect of serotonin (...

متن کامل

Voltage-sensitivity of motoneuron NMDA receptor channels is modulated by serotonin in the neonatal rat spinal cord.

Both N-methyl-D-aspartate (NMDA) and serotonin (5-HT) receptors contribute to the generation of rhythmic motor patterns in the rat spinal cord. Co-application of these chemicals is more effective at producing locomotor-like activity than either neurochemical alone. In addition, NMDA application to rat spinal motoneurons, synaptically isolated in tetrodotoxin, induces nonlinear membrane behavior...

متن کامل

Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?

Previous work has established that in vitro bath application of N-methyl-D-aspartic acid (NMDA) promotes locomotor activity in a variety of vertebrate preparations including the neonatal rat spinal cord. In addition, NMDA receptor activation gives rise to active membrane properties that are postulated to contribute to the generation or stabilization of locomotor rhythm. However, earlier studies...

متن کامل

Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord.

The motor programme executed by the spinal cord to generate locomotion involves glutamate-mediated excitatory synaptic transmission. Using the neonatal rat spinal cord as an in vitro model in which the locomotor pattern was evoked by 5-hydroxytryptamine (5-HT), we investigated the role of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in the generation of locomotor patterns record...

متن کامل

TTX-Resistant NMDA Receptor-Mediated Membrane Potential Oscillations in Neonatal Mouse Hb9 Interneurons

Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 1998